ML_101
  • Introduction
  • ML Fundamentals
    • Basics
    • Optimization
    • How to prevent overfitting
    • Linear Algebra
    • Clustering
    • Calculate Parameters in CNN
    • Normalization
    • Confidence Interval
    • Quantization
  • Classical Machine Learning
    • Basics
    • Unsupervised Learning
  • Neural Networks
    • Basics
    • Activation function
    • Different Types of Convolution
    • Resnet
    • Mobilenet
  • Loss
    • L1 and L2 Loss
    • Hinge Loss
    • Cross-Entropy Loss
    • Binary Cross-Entropy Loss
    • Categorical Cross-Entropy Loss
    • (Optional) Focal Loss
    • (Optional) CORAL Loss
  • Computer Vision
    • Two Stage Object Detection
      • Metrics
      • ROI
      • R-CNN
      • Fast RCNN
      • Faster RCNN
      • Mask RCNN
    • One Stage Object Detection
      • FPN
      • YOLO
      • Single Shot MultiBox Detector(SSD)
    • Segmentation
      • Panoptic Segmentation
      • PSPNet
    • FaceNet
    • GAN
    • Imbalance problem in object detection
  • NLP
    • Embedding
    • RNN
    • LSTM
    • LSTM Ext.
    • RNN for text prediction
    • BLEU
    • Seq2Seq
    • Attention
    • Self Attention
    • Attention without RNN
    • Transformer
    • BERT
  • Parallel Computing
    • Communication
    • MapReduce
    • Parameter Server
    • Decentralized And Ring All Reduce
    • Federated Learning
    • Model Parallelism: GPipe
  • Anomaly Detection
    • DBSCAN
    • Autoencoder
  • Visualization
    • Saliency Maps
    • Fooling images
    • Class Visualization
Powered by GitBook
On this page
  • Different Types of Convolution
  • Output shape
  • 1. Convolution v.s. Cross-correlation
  • 2. Convolution in Deep Learning
  • 3. 3D Convolution
  • 4. 1 x 1 Convolution
  • 5. Convolution Arithmetic
  • 6. Transposed Convolution (Deconvolution)
  • 7. Dilated Convolution (Atrous Convolution)
  • 8. Separable Convolutions
  • 9. Flattened convolutions
  • 10. Grouped Convolution
  • 11. Shuffled Grouped Convolution
  • 12. Pointwise grouped convolution
  • Reference

Was this helpful?

  1. Neural Networks

Different Types of Convolution

PreviousActivation functionNextResnet

Last updated 3 years ago

Was this helpful?